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ABSTRACT

Consider the abstract differential equation

(1) u"(t) + 2Bu'(t) = Au(t) + F(u(t)), t 4 R , u(O) x,

u'(0) y

where A and B are densely defined linear operators and F is

possibly nonlinear and unbounded. Assuming that A + B2 generates a

cosine family C(t) and -B generates a group T(t), there is a

variation of constants formula for (1); namely

(2) u(t) = T(t)[C(t)x + S(t)(Bx + y)

+ t T(t - s)S(t -, s)F(u(s)) ds," + 0

where S(t) is the sine family associated with C(t). The motivating

.q examples include wtt + 2b(x)w t = w + f(w,w x w ) and w + 2w tx=
xx xwt tt :t

4
'q- w + f(W,WxW t ) for 0 < x < 7r, t P w(x,O) =h(x), wt (x,O) =gx

and various boundary conditions. We examine the existence of mild solu-

tions and the asymptotic behavior when there is a damping eFfect intro-

duced by the 2Bu'(t) term.
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Key Words: abstract differential equations, strongly continuous

cosine family, strongly continuous group
Work Unit No. 1 - Applied Analysis
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SIGNIFICANCE AND EXPLANATION

A variation of constants formula is given for certain second

order differential equations in a Banach space. The abstract

results obtained can be applied to a class of damped semilinear

hyperbolic partial differential equations; in particular, the

existence and asymptotic behavior of solutions of such equations

is examined.

' i

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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COSINE FAMILIES AND DAMPED SECOND ORDER

DIFFERENTIAL EQUATIONS

James H. Lightbourne, III

Samuel M. Rankin, III

1. INTRODUCTION. Let X be a Banach space and A and B be linear

operators on X with domains D(A) and D(B) respectively. F will de-

note a nonlinear, possibly unbounded map on X. We consider the abstract

differential equation:

(1.1) u"(t) + 2Bu'(t) = Au(t) + F(u(t)), t c JR

u(O) = x, u'(O) = y

Essentially under the assumption that A + B 2generates a cosine family

C(t), t e R, of linear operators on X and that -B generates a group

T(t), we will establish existence for (1.1) and examine the asymptotic

behavior of (1.1) when there is a damping effect introduced by the term

2Bu'(t). We will actually consider "mild" solutions of (1.1); i.e., solu-

. tions of the variation of constants equation:
tr

(1.2) u(t) = T(t)[C(t)x + S(t)(Bx + y)] ' T(t- s)S(t- s)F(u(s))ds,

where S(t) is the sine family associated with C(t).

Two situations to which the abstract theory applies are indicated by

the following examples.

(1.3) wtt(x,t) + 2b(x)w t(x,t) = Wxx(x,t) + f(w(x,t), wx(xt)),

t t R, 0 < x < 7r

w(x,O) = h(x), w t(x ,O) = g(x), 0 _ x !<

w(O,t) = w(7,t) = 0, t E 1R

where b: 10,n] -* II is continuous. Asymptotic behavior for (1.3)

Sponsored by the United States Army under Contract 11o. DAAG29-80-C-0041, This
material is based upon work supported by the National Science Foundation under
Grant No. ISP-8011453-15.
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and f F 0 has been considered by Rauch [3]. The second illustrative

example is

(1.4) wtt(x,t) + 2wxt(X,t) = Wxx(x,t) + f(w(x,t), wx(x,t)),

t e lR, 0<x<w

w(x,O) = h(x), w (x,O) = g(x), 0 -< x <it
t

w(0,t) = w(rO,t), w (O,t) = w (r,t), t E IR

x x 7Vt

The preliminaries in section 2 include the known properties of cosine

families that we will use and the assumptions on A and B which will be

made throughout the paper. Also, in section 2 we establish the relation-

ship between equations (1.1) and (1.2). In section 3 we give existence

criteria for equation (1.2) and some global properties of solutions are

given in section 4. The examples are discussed in section 5.

2. PRELIMINARIES. Let X be a Banach space with norm 1.

DEFINITION. A one-parameter family {C(t): t c 1R} of bounded linear

operators on X is called a strongly continuous cosine family provided

(i) C(0) = I, the identity on X;

(ii) C(s + t) + C(s - t) = 2C(s)C(t), for all s,t o R; and

(iii) for each x c X, C(*)x: R - X is continuous.

Associated with C(t) is the sine family {S(t): t c JIR defined by

S(t)x = ft C(s)x ds for x e X. the infinitesimal generator of C(t) is

0

the linear operator G: D(G) - X defined by Gx = C"(O)x where
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D(G) = x e X: C(.)x. JR -~ X is twice continuously

differentiable}.

We also refer to the set E defined by

E = IX E X: C(*)x: JR - X is continuously differentiablel.

The proof of the following proposition as well as a more complete

discussion of cosine families may be found in Travis and Webb [4].

PROPOSITION 2.1. Let {C(t): t E ]I be a stronly~ continuous cosine

family of bounded linear operators on X with generator G. The following

properties hold:

(i) G is a closed operator on X with domain D(G)

dense in X;

(ii) if x E X, then S (t) x E E and S'(t)x = C(t)x;

(iii) if x c E, then S(t)x E D(G) and S"(t)x =GS(t)x;

(iv) if x c E, then C'(t)x = GS(t)x;

(o') if x - D(G), then S(t)x E D(G) and GS(t)x = S(t)Gx;

(Vi) if x -E D(G), then C(t)x £ D(G) and C"(t)x = GC(t)x =C(t)Gx;

(vii) C(t + s) - C(t - s) =2GS(t)S(s), for all s,t cER

(viii) S(s + t) = S(s)C(t) + S(t)C(s), for all s,t E IR

(ix) C(t), S(s), C(s), S(t) cornmste for s,t E R

(x) there exist constants K t I and w 0 such that

IC(t)j -, Ke~~ and St ~) ~ ~S dsj for

all t,t E IR

Throughout this paper we will make the following suppositions on A

and B. Recall that {T(t): t £ JR} is said to be a strongly continuous
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jgroup of linear operators on X provided T(O) =I, T(t + s) =T(t)T(s)

for all t,s e IR , and for each x c X, T (-)x: R. -). X is continuous.

(2.1) A and B are densely defined linear operators

on X with domains D(A) c D(B).

(2.2) G = A + B 2generates a strongly continuous cosine

family {C(t): t E IRI.

(2.3) -B generates a strongly continuous group {T(t): t c IRI

of linear operators on X.

We will also refer to the regularity conditions:

(2.4) D(G) =D(A + B) D(A).

(2. 5) T (t): D (A) -~ D (A) .

(2.6) E c D(B) and if {S(t): t c IR) is the sine family

associated with C(t), then t -- BS(t)x is continuous

for each x c X and if x E D(B) then S(t)Bx =BS(t)x.

*2(2.7) If x E D(B), then C(t)x E D(B) and C(t)Bx BC(t)x.

(2.8) For x E X, f5 T(u)S(u)x du e D(A) and
r

AJs T(u)S(u)x du =T(s)C(s)x - T(r)C(r)x
r

+ BT(s)S(s)x - BT(-r)S(r)x.

The authors do not know if (2.8) is a consequence of (2.1) - (2.7); how-

ever, it is observed in section 5 that the examples satisfy (2.1) - (2.8).

PROPOSITION 2.2 (Travis and Webb [511). Suppose P is a closed

linear operator on X such that

Mi S(t) e D(P) for allt tc IR and x E X; and

(ii) for each x c X, the map t +PS(t)x is continuous.



Then there exists M - 1 and w* ; w such that IPS(t)l s Me' *  for

all t 6 IR, where w is given in Proposition 2.1(x).

REMARK. Assuming condition (2.6), there exists M 1 and w* > w

such that JBS(t)J -< Me * Iti

The following proposition justifies referring to a solution of equation

(1.2) as a mild solution of (1.1).

PROPOSITION 2.3. Suppose (2.1) - (2.8) hold and g: R -* X is con-

tinuous. If g:IR -i X is continuously differentiable, x e D(G) with

Bx c E, y E E, and u satisfies

(2.9) u(t) = T(t)[C(t)x + S(t)(Bx + y)] + T(t-s)S(t-s)g(s) ds,

then u(t) E D(A), u'(t) E D(B) for all t E IR, u is twice continuously

--. differentiable, and u satisfies

(2.10) u"(t) + 2Bu'(t) = Au(t) + g(t)

u(0) = x, u'(0) = y.

Conversely, if u is twice continuously differentiable, u(t) e D(A) and

u'(t) e D(B) for t E IR, and u satisfies (2.10), then u satisfies

(2.9).

Proof. To show that a solution of equation (2.9) satisfies (2.10),

we first define

v(t) =f T(t - s)S(t - s)g(s) ds.

Then
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v (t) = T(t- s)S(t -s)g(O) ds + T(t -s)S(t -s)g'(u) ds du

r t t- u

IT(t - s)S(t - s)g(O) ds + f f T(s)S(s)g'(u) ds du

Using condition (2.8), we have v(t) e D(A) and

Av(t) =T(t)C(t)g(O) - g(O) + BT(t)S(t)g(O)

+ ft[T(t -u)C(t -u)g'(u) - g'(u) + BT(t- u)S(t- u)g'(u)] du

* = T(t)C(t)g(O) - g(O) + BT(t)S(t)g(O)

+ ft [T(t- u)C(t- u)g'(u) + BT(t -u)S(t- u)g(u)] du -g(t).

Also,

v'(t) =T~t)S~tg(O) + T~sSsg( )d

=It T(t)S(t)g(O) + T(ts)S(s)g(s) ds

* . It)(t -)( g) + T(t - s)(t dsg(s]d
0f

=Av(t) + g(t)

Defining V11(t) = T(t)[C(t)x + S(t)(Bx + y)) and using a straightforward

computation, one can establish that

v'I(t) + 2Bv'(t) =Av (t).

H H
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Noting that u(t) = vH (t) + v(t), it follcws that u satisfies (2.10).

To establish the converse statement, observe that

s T(t -s)S(t -s)u'(s) = T(t - s)[-C(t - s)u (s) + S(t - s)u'(s)I

+ BT(t - s)S(t - s)u'(s)

= -T(t -s)C(t - s)u'(s)

+ T(t - s)S(t - s)[Au(s) - 2Bu'(s) + g(s)]

+ BT (t - s) S(t - s) u'I(s)

and

d- T(t - s)C(t - s)u(s) =T(t - s)[-(A + B 2,S(t - s)u(s) + C(t - s)U'(s)]

+ BT(t - s)C(t - s)u(s)

Integrating we obtain

It

-T(t)S(t)u (0) =J [-T(t - s)C(t - s)u'(s) + T(t - s)S(t - s)Au(s)

- T(t - s)S(t - s)Bu'(s) + T(t. - s)S(t - s)g(s)] ds

* and

u(t) -T(t)C(t)u(O) = -T(t -sAt- us)-T -s)B S(t - s)u(s)

+ T(t - s)C(t - s)u'(s) + BT(t - s)C(t - s)u(s)] ds

Addit ion of the two formulas yields



8

u(t) - T(t)S(t)u'(O) - T(t)C(t)u(O)

= fT(t - s)S(t - s)g(s) ds
0

rt
+ [BT(t - s)C(t - s)u(s) - T(t - s)S(t - s)Bu'(s)

- T(t - s)B S(t - s)u(s)] ds

= T(t- s)S(t- s)g(s) ds - [T (t - s)S(t - s)Bu(s)I ds
0 

o

• jrt
=f T(t - s)S(t - s)g(s) ds + T(t)S(t)Bu(O)

0

and it is seen that u satisfies (2.9).

3. EXISTENCE. In this section we establish the existence of solutions

to equation (1.2) under various assumptions on the cosine family C(t)

generated by G = A + B2 and the nonlinear function F.

PROPOSITION 3.1 (Fattorini [1]). If G is the generator of a strongly
:.2

continuous cosine family then there exists a translation Gc G - c2I of

G such that

S(i) exists as a bounded operator on X and

(ii) for 0 < ci 5 1 the fractional powers (-Gda exist as

closed, densely defined operators with
-- 1  i2 )

DG) c D((-Gc) ) c D((-G ) for 0 < a 2 < a 1I

The existence of (-G )-1 implies that (-G )-a exists as a bounded

linear operator on X and consequently D((-Gc ) ) becomes a Banach space

Xa  with norm Ixl, = l(-Gcaxj. Also in [1], it was shown that if X =

I-
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< p < then E c D((-G )l/2) and for each x e X, (-G)l 2S(.)x: JR - X

is continuous. For general Banach space X, Rankin [2] showed that

F c D((-G ) ) for all 0 <_ a < 1/2. We shall make the following assumptions:

(3.1) There exists 0 < A < 1 such that E c D((-G) ) and

(-GC) S(.)x:]R - X is continuous for x c X.

(3.2) If 0 < a 5 1 and x e D((-G )a), then T(t)x E D((-Gc) a)
C C

CL awith (-G ) T(t)x=T(t)(-G ) x for all t e R.
C C

REMARK. If condition (3.1) holds, then by Proposition 2.2 there exists

M 1 and w w such that 1(-G)S(t)I !< M e for all t E R.

THEOREM 3.1. In addition to (2.1) - (2.3), (3.1), and (3.2), suppose

D c XA  is open. If F:D - X satisfies IF(xl) - F(x2)1 < L~xI - x2IA for

some L > 0 and all xlX 2 E D, then for each x E D n D(B) and y E X

there exists a > 0 and a unique continuous function u: [-a,a] - X such

that u satisfies (1.2).

Proof. The proof employs the contraction mapping principle. Choose

6> 0 and N > 0 such that if

W(x,6) = {z E X : Iz - X <

then W(x,6) c D and !F(z)I s N for z e W(x,6). Choose a > 0 such

that for t E [-a,a]

IT(t)C(t)x - xIA + IT(t)S(t)(Bx + v)X : g

Nfa .T(s)(-c)AS(s)I ds < and
-ac 2

ij a IT(s)(-G CS(s)1 ds < 1.
11 -a

I-
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Define

K = {v c ([-a,a]; Xx): sup Iv(t) - x !5 <
-a5tga

and the map H: K - ([-a,a]; X) by It
[Hv](t) = T(t)[C(t)x + S(t)(Bx * y)] + T(t-s)S(t - s)F(v(s)) ds

The choice of 6 and a implies that H: K - K. Furthermore, for

V19 v, E K,2

SIHvl(t) - Hvz(t) IX :5 IT(t - s)(-Gc) XS(t - s)[F(v(s)) - F(v2 (s))]f ds

. L IT(t - s)(-G) XS(t- s)f IVI(S) - v2 (s)tx ds

0

and by the choice of a we have that H satisfies the hypothesis of the

contraction mapping principle. The assertions follow.

THEORLM 3.2. In addition to assunptions (2.1) - (2.5), (3.1), and

(3.2), suppose (-G is compact. Let D CX be open and 0 < 8.
cA

If F:D - X is continuous, then for each x c D n D(B) and y E X

there exist a > 0 and a continuous function u: [-a,aI X satisfying

(1.2).

Proof. Let 6 > 0 and N > 0 be such that if

W(x,'6) = {z E X : Iz - x 1 < 6}

then W(x,S) c D and IF(z)I : N for z e w(x,6). Choose a > 0 such that

IT(t)C(t)x - xj, + IT(t)S(t)(Bx + y) 6 A s

and

NJ IT(s)(-G S(s)I ds <
-a



Define the set K and map H as in the proof of Theorem 3.1. As in Theorem

3.1, the choice of 6 and a implies that H: K K. For VlV 2 e K,

Hv 1 (t) - Hv2 (t) < IT(t- s)(-Gc)XS(t- s) IF(V1(s)) - F(v2 (s))l ds

and the continuity of H follows from the continuity of F: D - X To show

that {Hv: v c K) is an equicontinuous family in ([-a,a]; Y,), we ob-

serve that if (G) -1 is compact then (-G)' is compact for 0 < a < 1

(see Travis and Webb [6]). For -a : t1 < t2 S a and v e K

jHv(t 1) -Hv(t 2 ) x

< IT(t2)C(t2)x - T(t1)C(tI)xiX , + IT(t2)S(t2)(Bx+y) - T(t)S(t1)(Bx+y)IX

+ ft2 IT(t 2 - s)S(t 2 - s)F(v(s))K, dsr-. tl

t 2
+ 1o I[T(t 2 - s)S(t 2  s) - T(t1 - s)S(t1  s)]F(v(s))jx ds.

Now write

- t

j(T(t 2 - s)S(t s) - T(t 1  s)S(t - s))F(v(s))I ds
tOITt22 1 1

ti

* 1S IT(t 2 - s) [(-Gc) S(t 2 - s) - (gc)XS(t 1 - s)] (-GcY -Gc) F(v(s))Ids
fo 2- s)-(G0)C

+ JT(t2-s)[T(t 2-t1 ) - I](-Gd)-8(GC) S(tI-Ss)(-G C ) BF(v(s))t ds

0

The equicontinuity of the family (Hv: v c K} follows since

-)-(-G C) F(y): y E W(x,6)}
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and

{(-Gc-CGc S~t -s)(-G )OF(y):y e W(x,6), 0 5 s 5 t. <a

are precompact sets in X and the maps t - ) X)S(t) and t * T(t) are

continuous uniformly on compact sets of X. Also, for each v c K and

t e (-a,a]

(-GC) "Hv(t) = T(t)C(t)(-GC) "x + T(t)(-GC) AS(t)(Bx + y)

+ T(t - s) (-G) (-Gc) XS (t - s) (-Gc)'F (v(s)) ds
0

and consequently, {Hv(t): v E K and t e [-a,a]} is precompact in Xx -

Thus by the Ascoli-Arzela Theorem {Hv: v E K is precompact in X and

the assertions of the theorem follow from the Schauder Fixed Point Theorem.

THEOREM 3.3. In addition to assumptions (2.1) - (2.5), (3.1), and

(3.2), suppose (-G) is compact and 0 < a < X. If D c X8 is open

and F:D - X is continuous, then for each x e D n D(B) and y e X there

exist a > 0 and a continuous function u: [-a,a] - X8 satisfying (1.2).

Proof. The proof is similar to that of the previous theorem. Let

6 > 0 and N > 0 be such that if

W(x,6) = {z e X : Iz- xI < 61

then W(x,6) c D and IF(z)l s N for z e W(x,6). Define K and H as

before. One shows H: K - K and is continuous. Writing

(-Gc)Hv(t) = T(t)C(t)(-G C) x + T(t) C) S(t)(BX + y)

+ T(t - s)(-G ) (-G,)'S(t - s)F(v(s)) ds
0

- - .
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one observes that { llv(t): v c K and t 4 f-a,a]} is precompact in X

and writing

IHv(t 2) - Hv(tl)j8

< fT(t 2)C(t2)x - T(t1 )C(t)x(8 + IT(t2)S(t2) (Bx+ y) - T(t1 )S(tl)(Bx+ y) I

t2
+ f JT(t 2  s)S(t 2 - s)F(v(s))1 8 ds

~ti

+ T(t-s) [(-G)S (t8-
o 2  -c 2 - s) (-G c)S(t - s)](-GC) F(v(s))j ds
ti

+j JT(t 2  s)[T(t2  tl) - l](-Gc)-(Gc)S(tI
+ 2 2 (t1  -cs)F(v(s))I ds

one observes that the family {Hv: v c K} is equicontinuous. Consequently,

H(K) c X is precompact the the assertions follow.

REMARK. In addition to the hypothesis of Theorem 3.1, 3.2, or 3.3,

suppose the regularity conditions (2.6) and (2.7) hold. Then if x e E

and y E X, we have that u' exists and u': [-a,a] X is continuous.

If the regularity conditions (2.4) - (2.8) hold, F is continuously Frechet

differentiable, x E D(G) with Bx e E, and y E E, then u satisfies (1.1).

The final theorem of this section gives sufficient criteria for global

existence.

THEOREM 3.4. Assume that either

(i) the suppositions of Theorem 3.1 hold, or

(ii) the suppositions of Theorem 3.2 (3.3) hold and F maps

bounded sets of D into bounded sets of XS (X).
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and the regularity conditions (2.6) - (2.7) hold. If x e E and y e X

and u is a solution of equation (1.2) noncontinuable to the right on

[O,d], then either d = +w or, given any closed bounded set V c D, there

exists a sequence tk d- such that u(tk) V. An analogous result holds

for noncontinuability to the left.

Proof. The proofs under assumptions (i) and (ii) are similar; only

assumption (ii) with Theorem 3.2 is considered. For contradiction, sup-

pose d < - and there exists a bounded closed set V c D such that

u(t) e V for all t c [O,d). For 0 ! t1 < t2 < d and u satisfying

equation (1.2), we have

Ju(t 2) U(t1)IX 5 IT(t2)C(t 2 )(-G ) x - T(t1)C(tl)(-GC) x1

+ I[T(t 2 )(-GC) S(t2) T(t1)(-GC) XS(t1)](Bx + Y)I

t 
2

+fJ ITt 2 - s)(-Gc)AS~t2 - s)F(u(s))l ds

t1

+ Jt  I[T(t 2 - s)(-Gc) S(t2 -s)

0

- T(t - s)(-GcI)S(t1 - s)]F(u(s))l ds.

Noting that {F(u(s)): 0 < s < d} c F(V) is bounded in X and thus pre-

compact in X and that t -* T(t)(-Gc)X S(t) is uniformly continuous on

compact sets in X we see that lim u(t) exists with lim u(t) = p c V c D.
t-d- t-*d

Also,



ju (t 2  - u(t1)I

!5 IT(t )GS(t )x -T(t )GS(t )XI + tT(t )BC(t )x - T(t )BC(t )XI

+IT't )C(t )(Bx +y) - T(t )C(t )(Bx + *

+ T(t )BS(t )(Bx + y) - T(t )BS(t 1 )(Bx + Y

+ IT(t 2 s)c(t 2 - s)(u(s)) - T(t 2 - s)BS(t 2 - s)F(u(s))t ds

1

+ f1  [T(t2  s)BS(t 2  s) - T(t1 -s)BS(t~ s)1IF(u(s))I ds.

- -~Again, using the fact that {F(u(s)): 0 !S s < dl is precompact in X and

that t -T(t)C(t) and t -~ T(t)BS(t) are continuous uniformly on compact

sets of X, it follows that lirn u 'Ct) =q c X exists. Noting that

t-*d

p =T(d)[C(d)x + S(d)(Bx + y)] + fT(d - s)S(d - s)F(u(s)) ds

and

q =T(d)(GS(d)x + C(d)(Bx + y)] -BT(d)[C(d)x + S(d)(Bx + y)]

- d BT(d - s)S(d - s)F(u(s)) ds + fTOd - s)C(d - s)F(u(s)) ds,

we see that p c D n D(B) and q c X. Thus one can obtain a solution of

the equation

v(t) T(t -d) [C(t -d)p +S(t -d) (Bp +q). +J T(t - s)S(t - s)F(v(s)) ds



16

for d < t < d*. One then extends u to [O,d*) by defining u(t) = v(t)

on [d,d*). Using the properties found in Proposition 2.1 (in particular,

identities (vii) and (viii)), one can show for t e (d,d*) that

u(t) = v(t) = T(t)[C(t)x + S(t)(Bx + y)] + T(t-s) S(t-s)F(u(s)) ds,
0

contradicting the noncontinuability of u.

4. ASYMPTOTIC BEHAVIOR. In this section we will assume T(t) decays

exponentially as t - ; i.e., there exists b > 0 such that IT(t)I < Me -

for all t c [0,0). For convenience, we assume M = 1.

THEOREM 4.1. In addition to the suppositions of Theorem 3.2, suppose

F maps bounded sets of XA into bounded sets of X B. Also, suppose

b < w, x E X for some A < y < I with Bx c X0 , y X, and u is a

solution of (1.2) defined and bounded on [0,-). Then {u(t): t a 0} is

precompact in XA. A similar assertion holds under the hypotheses of

Theorem 3.3.

Proof. Choose 1 > y > 0 such that X < y < +. Then

(-Gc)Yu(t) = (-G )YT(t)[C(t)x + S(t)(Bx + y)]

+ (-Gc )f tf T(t- s)S(t- s)F(u(s)) ds

= T(t)C(t)(-Gc )yX + T(t)(-Gc)XS(t)[(-Gc)Y-X(Bx + y)]

+ I T(t -s)(-G ) S(t- s)(-Gc)Y-XF(u(s)) ds
0

and thus



17

1(-G cYu(t)I s Ke (-b+w)tixj + MXe IBx + Y1Y-X

+ MXft e (-b+wX)(t)IF(u(s))Iy_, ds.
0

Consequently, {(-Gc)Yu(t)j is bounded and {(-G ) u(t): t a 01 =

{(-G ()X(-G )yu(t): t > O is precompact in X.
c C

J THEOREM 4.2. In addition to the hypotheses of Theorem 3.4 with D = X
+ +

suppose there exists a continuous function j:]R -JR+ with j (0) = 0

such that IF(x)I 5 j(r) lxl for x E X. and IxI, s r. If x e X, n D(B)

and y e X, then there exists E > 0, N - 1, and 6 > 0 such that if

IxI, 5 e/2 and jyj ! E/2 then the solution of (1.2) exists on [0,oo) and

satisfies Iu(t)l X  Ne-6t (IxI + lBx + yj).

Proof. Let N = max{ K,f}, eI > 0 such that j(Ei) < (b - WX)/2,

and E = E1/N. For !5 E/2 and IA Y1 C/2, let u be the solution

of equation (1.2) and [O,t*] ([0,-) if t* = 0) the maximal interval

such that Iu(t)x !5 E1  for all 0 ! t < t*. For 0 t <t*,

(-Gc) U(t)

At X

T(t)[C(t)(-G ) X + (-cG S(t)(Bx+y)] + T(t-s)(-G) S(t-s)F(u(s)) ds
CC0

and

Iu(t) IX
ebt[Ke x + Xe IBxy] + b M J' b S) e(ts) u(s) IXds.

Thus

JRl-IIi
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(b-w,) te lu t)

b - 0X M t (b-wAsl ()

!Klx + MIBX + Yj +- -- f e j u Xs) d
0

and Gronwall's inequality yields

Iu(t)I, !5 NCIxl, + lBx + yI)e[(b-wA)/2 ] (Nt)

Thus 6 [(b - w )/2]N and t* by Theorem 3.4.

5. EXAMPLES. We first consider the equation

(5.1) wt (x,t) + 2b(x)w(x,t) = w (x,t) + f(w(x,t)), 0 < x < n, t E
tt XX

w(Ot) = w(7,t) = 0, t c R

w(x,O) = h(x), w t(x,O) = g(x), 0 < x 5

where h and g are in / 2(O,n;R ) and b: (0,n] - R is continuous.

Lot X = %,o,;R ) with inner product ( , ) and define A: D(A) + X

by AO = 0" where

D(A) = e X: 4), 0)' are absolutely continuous,

0" £ X, (O) = (it) = 0}.

A can be written in the form

AO -- n 2(%,dnn
naI

for 4 c D(A), where *n (x) - (2/it)t/ 2 sin(nx). We define B: X X by

[BOIx= b(x) (x). Defining G A B we have

* 9, i 1 
r

i l I *". . ..... ; "Z; : =: '"- " " ; "'; i
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[Go)x = C-n2 * bx))X)
n=l

and G generates the cosine family

[C(t)Ml(x) = Cn(Xit)(,n)0n(x)
n=l

where

2 2 1/22 2
cos(n -b(x)) t , n > bx)

cosh(b2(x) n) t , n < b(W.

Also,

[S(t)f](x) = Sn(Xgt)(Mn)0n(x)
n=l

where

-' 2 -1/2 2 2 1/2 2 2
(n _ b x)) sin(n - b (x)) t , n > b x)

S n (X,t) = t , n2 = b 2(x)

2(x 2 1/2 2 2 1/ 2 b (x.
(b 2x)-n2' sinh(b (x) -n)1/2 2 2

Note also that -B generates the group {T(t): t e 1R} on X defined by

iT(t)f]x = e tb(x)O(x) and D(B) = X. It is easily seen that properties

(2.1) - (2.7) are satisfied. Property (2.8) is established by the following

proposition.

PROPOSITION 5.1. Let A, B, C(t), S(t), T(t) be aa above. Then (2.8)

is satisfied, i.e., for 4 e X, s T(u)S(u) du e D(A) and

A J T(u)S(u)o du = T(s)C(s)o - T(r)C(r)o + BT(s)S(s) - BT(r)S(r) .
r
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Proof. Using the fact that C(t)T(s) = T(s)C(t) for all t,s e R

and identity (viii) in Proposition (2.1), we have

j(t) E Qt)f r T(u)S(u)o du = T(u)(S(u + t) + S(u - t))4 du.

r r

Thus

j'(t) 2 T(u)(C(u + t) - C(u - t))p du

Ss+t Is-t
-T(u -t)C(u) du T(u+ t)C(u)> du

2 r+t Tr-t

and

-- It

J" (t) =~ [T (s) C(s + t)4 T (r) C(r)f + j BT(u - t)C(u) du
2 2 r+ t1 s~

+ . [T(s)C(s - t)4 - T(r)C(r - t)] + ,BTt(u + t)C(u) du.
2 2 fs-t

-. r-t

' Integrating by parts,

(A + B2) T(U)S(U)Odu C"(O)Jfs T(U)S(u)odu
r r

As
= T(s)C(s)$ - T(r)C(r) + BT(u)C(u) du

Ir

= T(s)C(s) - T(r)C(r) + BT(s)S(s)o - BT(r)S(r,i

+ B2T(u)C(u)O du

r

from which (2.8) follows.

As noted in the comments preceding condition (3.1), condition

(3.1) is satisfied with A = 1/2. Also, if c is such that b 2(x) - c2 < 0

.i
i4
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for all x e [O,ii], we see that G exists, satisfies

CO 2

[G C0](x) = I (-n2 + b (x) - c2) (C)n X ),
n=l

and is compact. Furthermore,
CO

[(G1/2 O 1 2 22 1/2 W[(-Gc)/2]x = (n2 _ b2 (x) + c ) ( n nX).
n=l

Since

1/2 00 2 2 2
D((-G = X: I (n b(x) + c )(Mn) < O}

n=l

- 4 : n 2 ( )2 <
4= n

-I we have from Travis and Webb [7] that

D((-G C)1/2) = X: is absolutely continuous,

c X, and 0(O) = O(r) = 0}.

Noting that for D(-GC) 1 2

nil= (O,n)¢n(x dx0 =

1 j n= r "(I1 2e , )cos(nx ] dxz'2 2

I n 2(

n=l

and

I
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,11/2 = -G 1/c0

(n IG 1  2 " b2 (x) + c2) 1/2( n)n (x dx

I (n2 _ b 2(x) + c 2)(0 0n) 2

n=l

it follows that there exists K > 0 such that for all 4e D((-Gc)1/2)

10* I "I¢i1 Io'I.

If f(w) = -aw - bw3 , a,b > 0 or f(w) = sin w then equation (5.1) is

the Klein-Gordon or Sine-Gordon equation respectively and [F(f)]x = f(0(x))

satisfies the conditions of Theorem 3.2 with F: Xl/2 - X /2. For example,

to see F: Xl/2 ' X /2 defined by [F(f)]x = -aO(x) - b 3(x) is con-

tinuous, observe for X / X2

IF, - FpI11 2 s KI[F]' -[Fi] I

s Kja(0$' -') + 3b(Op - 02¢')1

aK1 I 3K~ *2 2 v + v 2 2M-S aKl'-4J'i + 3bK(14,2 P' - 'P20'! + lo,{ 2 _ 2)l)

Supp Suppose b(x) - 0 for all x E [0,r] and lct b = min{b(x):
m

-b t

0 < x - } and b = max{b(x): 0 <- x 5 7r). Then IT(t)1 - e m and

there exists M 1/2 > 0 such that J(-Gc)1/2s(t)1 5 MI/2 ew l1 2t  where

w =0 i b ~l and = 2 v1 /2  1,>S1/2 = 0 if bM : 1 and wl/2 N - 1) if bM > 1. Consequently,

the results of section 4 apply provided 0 < bm < b 1 or b > 1 and

b > (b2 - 1)1/2.
m M

As another example, consider
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(5.2) w tt(x,t) + 2w xt(x, t) w xx (x,t) + f(w(x,t)), 0 < x < 1r, tE R

w(x,O) = h(x), w (x,O) = g(x), 0 < x -r
t

w(0,t) = w (,t), w x(Ot) = wx (7,t), t E R

where h,g E de,(0,TT; R). Again let X = /(0,7Tr;R) with inner product

( , ) and define A: D(A) - X by A4 = 4" where

D(A) = E X: 4, 4' are absolutely continuous,

0 I"E X, 4(0) = (T), '(o) = 0'(TO

A can be written in the form
co

AO= -4n2[( ,4n)4n + (0,jn)* n]
n=1

where n (x) = (2/n) 12sin(2nx), q n (x) = (2/Tr) /2cos(2nx), and

4 a + n=l (q'Cn)4 n + (0tPn) Pn a = (1/iT) f 0  (x) dx. We define

B: D(B) - X by B4 =' where

D(B) = E X: 4' E X, 4(0) =

The group {T(t): t E IR} generated by -B is defined by

[T(t)flx = a +nI (,n)4 n(x - t) + (,))%(x - t)
n=1

2
and G A + B = 2A generates the cosine family

-C(t)B]x = a + I cos(2/' nt)[(O,n)On(x) + (",' 4n)V'n(X)I.
n=l

Conditions (2.1) - (2.7) are satisfied and condition (2.8) is verified

in the manner indicated by the proof of Proposition 5.1. Also, G-  exists

as a compact operator on X and (-G c )12 exists with

Emma=-
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(-G C)11 4 242- ((0),0 don~ + (4,*n)'Pn1.
n=l

The existence results of section 3 apply to example (5.2); however, note

that since T(t) is of type b = 0 and C(t) is of type w = 0, the

asymptotic results of section 4 do not apply.

The abstract theory also applies to the equation

(5.3) w t + 2b(x)wt = -w xxx + f(w~w xi 0 < x < w , t ER

w(0,t) =w(rr,t) = w xx(0,t) = w xx('r,t) = 0, t e I

w(x,0) g(x), wt (x,0) = h(x), 0 5 x :5 7r

As before let X 2 4'(0,Tr; R), AO)=-4" with

D(A) ={O) c X: 4), 0', 4)", 4)'are absolutely continuous,

fiE X, 0 (0) =4(70) = (0) = 4" (TO = 01.-

In this case, [F4)Ix = f(4)(x),4)'(x)) with appropriate conditions on f

satisfies F: X14-~ X continuous and consequently Theorem 3.3 applies.

REMARK. The techniques also apply to

(5.4) w -2 + f(w,w ), 0 < X < 7r, t -2 0
tt - x 2 w xxxx

'1with the side conditions of (5.3). Here BO): -4)" with

D(B) ={)E X: 4)4'are absolutely continuous,

4) eX, 0)(0) W )i)=0.

Thus -B generates an analytic semigroup. Since A + B 2 0, C(t)x = ,

S(t)x =tx, and equation (1.2) has the form

u(t) =T(t)[x + t(Bx + y)] + f C t -s)T(t -s)P(u(s)) ds.
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20. Abstract (continued)

where A and B are densely defined linear operators and F is

possibly nonlinear and unbounded. Assuming that A + B2 generates a

cosine family C(t) and -B generates a group T(t), there is a

variation of constants formula for C1); namely

(2) u(t). = T(t).[CCt)X + S(t) (Bx + y)

rt
wi i Tt - s)SCt - s)Fu(s)) ds,

0

where SCt) is the sine family associated with C(tj, The motivating

examples include wtt + 2b(x)w t ! fww Xwt) and w + =

w xx + fCww xwt), for O < x < 7r, t c R, wx,O) = h(x), wtCx,O) = g(X),

and various boundary conditions. We examine the existence of mild solu-

tions and the asymptotic behavior when there is a damping effect intro-

duced by the 2Bu'(t) term,
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